Custom Search

Saturday, October 8, 2011

 

Life Science Content Developer: R&D Systems

Love science, but interested in opportunities outside the lab?

R&D Systems is looking for creative PhDs to join our marketing team as Life Science Content Developers. The Content Developers research the literature and update themselves on a wide range of scientific topics in Immunology, Neuroscience, Cancer Biology, Development, Stem Cells, and more. They then use this knowledge to create content for the R&D Systems' website and print marketing pieces. Some projects include developing interactive cell signaling pathways on the web, science related animations, and illustrated posters detailing complex biological topics. The Content Developers work closely with graphic designers, web designers, and artists to create pieces that are not only strong in scientific content, but are also pleasing to the eye.

This position requires a PhD minimum, with postdocs preferred. If you love science, are creative, and have excellent communication skills, please visit our website to apply.

For more info & to apply: http://www.rndsystems.com/career_opportunities.aspx
* Look for the job title, Life Science Content Developer, Marketing.
 

Davis Foundation Postdoctoral Fellowship Program in Eating Disorders Research

The Hilda and Preston Davis Foundation is pleased to announce the 2012 Grant Cycle of its Postdoctoral Fellowship Program in Eating Disorders Research. By attracting young scientists to the field, each fellowship may lead to a lifetime career contribution to understanding the biological causes of eating disorders. The long term goal of the program is to accelerate medical research discoveries that will lead to improved therapies for anorexia nervosa and bulimia nervosa. Proposals must be focused on relevant aspects of the biological causes of anorexia nervosa and bulimia nervosa as defined by clinical criteria. Research areas of interest include but are not limited to neural pathways of feeding behavior in animal models; molecular genetic analysis of relevant neural circuit assembly and function; testing of new chemical compounds that might be used in animal models as experimental treatments; and brain imaging technologies that identify neurochemical pathways in patients with these disorders. Clinical psychotherapeutic studies, medication trials and obesity research are currently outside the scope of this Program.

Up to five three-year fellowships ranging from $43,000 - $63,000 per year, inclusive of a $3,000 expense allowance will be awarded to fellows who have completed no more than three years of postdoctoral research training as of the funding start date. The awards will support postdoctoral fellows working in nonprofit academic or research institutions in the United States.

Begin Online Application:
https://www.GrantRequest.com/SID_738?SA=SNA&FID=35030

Continute On Application:

https://www.GrantRequest.com/SID_738?SA=AM


 

Goldman Sachs Fellowship for Non-finance PhDs

Job Summary & Responsibilities

Goldman Sachs is seeking PhD candidates or graduates with non-finance backgrounds to participate in a 6 month fellowship opportunity from Mid-January to July 2012. The fellowship will enable PhDs to explore a potential long term career transition into credit or equity research. The fellows are provided with networking and mentorship opportunities, individual training and hands-on experience on a research team.

• Open to PhDs in all disciplines except finance or business related programs (all non-economics / non-finance fields are eligible)
• Finance background not required but passion for investing or some knowledge of the markets along with MS Excel experience is helpful

SAMPLE RESPONSIBILITIES
• Build and maintain financial models
• Market share, macro trend, and cross company and sector data analyses
• Company specific projects
• Update monthly reports, marketing books, and weekly reports
• Update and maintain daily valuation sheets

PREFERRED QUALIFICATIONS
• Excellent verbal and written communication skills
• Meticulous attention to detail and strong organizational skills
• Exceptional analytical skills, lateral thinking, and judgment
• A proactive approach and a high level of enthusiasm
• Experience with Microsoft Office applications (Excel, Word, Outlook)
• Ability to meet aggressive deadlines

APPLICATION PROCESS:
Applications will be accepted and reviewed on a rolling basis until October 30th. You will be contacted by November 2nd if you are selected to interview.

Apply Now


Thursday, October 6, 2011

 

The Nobel Prize in Chemistry 2011 Dan Shechtman

In quasicrystals, we find the fascinating mosaics of the Arabic world reproduced at the level of atoms: regular patterns that never repeat themselves. However, the configuration found in quasicrystals was considered impossible, and Dan Shechtman had to fight a fierce battle against established science. The Nobel Prize in Chemistry 2011 has fundamentally altered how chemists conceive of solid matter.

On the morning of 8 April 1982, an image counter to the laws of nature appeared in Dan Shechtman's electron microscope. In all solid matter, atoms were believed to be packed inside crystals in symmetrical patterns that were repeated periodically over and over again. For scientists, this repetition was required in order to obtain a crystal.

Shechtman's image, however, showed that the atoms in his crystal were packed in a pattern that could not be repeated. Such a pattern was considered just as impossible as creating a football using only six-cornered polygons, when a sphere needs both five- and six-cornered polygons. His discovery was extremely controversial. In the course of defending his findings, he was asked to leave his research group. However, his battle eventually forced scientists to reconsider their conception of the very nature of matter.

Aperiodic mosaics, such as those found in the medieval Islamic mosaics of the Alhambra Palace in Spain and the Darb-i Imam Shrine in Iran, have helped scientists understand what quasicrystals look like at the atomic level. In those mosaics, as in quasicrystals, the patterns are regular - they follow mathematical rules - but they never repeat themselves.

When scientists describe Shechtman's quasicrystals, they use a concept that comes from mathematics and art: the golden ratio. This number had already caught the interest of mathematicians in Ancient Greece, as it often appeared in geometry. In quasicrystals, for instance, the ratio of various distances between atoms is related to the golden mean.

Following Shechtman's discovery, scientists have produced other kinds of quasicrystals in the lab and discovered naturally occurring quasicrystals in mineral samples from a Russian river. A Swedish company has also found quasicrystals in a certain form of steel, where the crystals reinforce the material like armor. Scientists are currently experimenting with using quasicrystals in different products such as frying pans and diesel engines.

Dan Shechtman, Israeli citizen. Born 1941 in Tel Aviv, Israel. Ph.D. 1972 from Technion - Israel Institute of Technology, Haifa, Israel. Distinguished Professor, The Philip Tobias Chair, Technion - Israel Institute of Technology, Haifa, Israel.
http://materials.technion.ac.il/shechtman.html


 

The Nobel Prize in Physics 2011 Saul Perlmutter, Brian P. Schmidt, Adam G. Riess

"Some say the world will end in fire, some say in ice..." *
What will be the final destiny of the Universe? Probably it will end in ice, if we are to believe this year's Nobel Laureates in Physics. They have studied several dozen exploding stars, called supernovae, and discovered that the Universe is expanding at an ever-accelerating rate. The discovery came as a complete surprise even to the Laureates themselves.

In 1998, cosmology was shaken at its foundations as two research teams presented their findings. Headed by Saul Perlmutter, one of the teams had set to work in 1988. Brian Schmidt headed another team, launched at the end of 1994, where Adam Riess was to play a crucial role.

The research teams raced to map the Universe by locating the most distant supernovae. More sophisticated telescopes on the ground and in space, as well as more powerful computers and new digital imaging sensors (CCD, Nobel Prize in Physics in 2009), opened the possibility in the 1990s to add more pieces to the cosmological puzzle.

The teams used a particular kind of supernova, called type Ia supernova. It is an explosion of an old compact star that is as heavy as the Sun but as small as the Earth. A single such supernova can emit as much light as a whole galaxy. All in all, the two research teams found over 50 distant supernovae whose light was weaker than expected - this was a sign that the expansion of the Universe was accelerating. The potential pitfalls had been numerous, and the scientists found reassurance in the fact that both groups had reached the same astonishing conclusion.

For almost a century, the Universe has been known to be expanding as a consequence of the Big Bang about 14 billion years ago. However, the discovery that this expansion is accelerating is astounding. If the expansion will continue to speed up the Universe will end in ice.

The acceleration is thought to be driven by dark energy, but what that dark energy is remains an enigma - perhaps the greatest in physics today. What is known is that dark energy constitutes about three quarters of the Universe. Therefore the findings of the 2011 Nobel Laureates in Physics have helped to unveil a Universe that to a large extent is unknown to science. And everything is possible again.

Saul Perlmutter, U.S. citizen. Born 1959 in Champaign-Urbana, IL, USA. Ph.D. 1986 from University of California, Berkeley, USA. Head of the Supernova Cosmology Project, Professor of Astrophysics, Lawrence Berkeley National Laboratory and University of California, Berkeley, CA, USA.
www.physics.berkeley.edu/research/faculty/perlmutter.html

Brian P. Schmidt, U.S. and Australian citizen. Born 1967 in Missoula, MT, USA. Ph.D. 1993 from Harvard University, Cambridge, MA, USA. Head of the High-z Supernova Search Team, Distinguished Professor, Australian National University, Weston Creek, Australia.
msowww.anu.edu.au/~brian/

Adam G. Riess, U.S. citizen. Born 1969 in Washington, DC, USA. Ph.D. 1996 from Harvard University, Cambridge, MA, USA. Professor of Astronomy and Physics, Johns Hopkins University and Space Telescope Science Institute, Baltimore, MD, USA.
www.stsci.edu/~ariess/


 

Nobel medicine laureate Steinman passed away: Rockefeller University

WASHINGTON, Oct. 3 (Xinhua) -- The Rockefeller University confirmed Monday its Canadian-born cell biologist Ralph Steinman died three days before being awarded the Nobel Prize on Monday as the Nobel committee was unaware of his death at the time.

"Steinman passed away on September 30," the New York university said in a statement.

"He was diagnosed with pancreatic cancer four years ago, and his life was extended using a dendritic-cell based immunotherapy of his own design."

The Nobel committee was unaware of Steinman's death when announcing this year's winners and it was unclear whether the prize would be rescinded because Nobel statutes don't allow posthumous award.

"The Rockefeller University is delighted that the Nobel Foundation has recognized Ralph Steinman for his seminal discoveries concerning the body's immune responses," says Rockefeller University President Marc Tessier-Lavigne.

"But the news is bittersweet, as we also learned this morning from Ralph's family that he passed a few days ago after a long battle with cancer. Our thoughts are with Ralph's wife, children and family."

"We are all so touched that our father's many years of hard work are being recognized with a Nobel Prize," says Steinman's daughter Alexis. "He devoted his life to his work and his family, and he would be truly honored."

"Ralph's research has laid the foundation for numerous discoveries in the critically important field of immunology, and it has led to innovative new approaches in how we treat cancer, infectious diseases and disorders of the immune system," Tessier-Lavigne says.

Steinman, who discovered the immune system's sentinel dendritic cells, is this year's recipient of the Nobel Prize in Physiology or Medicine. He shares half the prize with Bruce Beutler and Jules Hoffmann.

Editor: yan


 

The Nobel Prize in Physiology or Medicine 2011 Bruce A. Beutler, Jules A. Hoffmann, Ralph M. Steinman

This year's Nobel Laureates have revolutionized our understanding of the immune system by discovering key principles for its activation.

Scientists have long been searching for the gatekeepers of the immune response by which man and other animals defend themselves against attack by bacteria and other microorganisms. Bruce Beutler and Jules Hoffmann discovered receptor proteins that can recognize such microorganisms and activate innate immunity, the first step in the body's immune response. Ralph Steinman discovered the dendritic cells of the immune system and their unique capacity to activate and regulate adaptive immunity, the later stage of the immune response during which microorganisms are cleared from the body.

The discoveries of the three Nobel Laureates have revealed how the innate and adaptive phases of the immune response are activated and thereby provided novel insights into disease mechanisms. Their work has opened up new avenues for the development of prevention and therapy against infections, cancer, and inflammatory diseases.

Two lines of defense in the immune system

We live in a dangerous world. Pathogenic microorganisms (bacteria, virus, fungi, and parasites) threaten us continuously but we are equipped with powerful defense mechanisms (please see image below). The first line of defense, innate immunity, can destroy invading microorganisms and trigger inflammation that contributes to blocking their assault. If microorganisms break through this defense line, adaptive immunity is called into action. With its T and B cells, it produces antibodies and killer cells that destroy infected cells. After successfully combating the infectious assault, our adaptive immune system maintains an immunologic memory that allows a more rapid and powerful mobilization of defense forces next time the same microorganism attacks. These two defense lines of the immune system provide good protection against infections but they also pose a risk. If the activation threshold is too low, or if endogenous molecules can activate the system, inflammatory disease may follow.

The components of the immune system have been identified step by step during the 20th century. Thanks to a series of discoveries awarded the Nobel Prize, we know, for instance, how antibodies are constructed and how T cells recognize foreign substances. However, until the work of Beutler, Hoffmann and Steinman, the mechanisms triggering the activation of innate immunity and mediating the communication between innate and adaptive immunity remained enigmatic.

Discovering the sensors of innate immunity

Jules Hoffmann made his pioneering discovery in 1996, when he and his co-workers investigated how fruit flies combat infections. They had access to flies with mutations in several different genes including Toll, a gene previously found to be involved in embryonal development by Christiane Nüsslein-Volhard (Nobel Prize 1995). When Hoffmann infected his fruit flies with bacteria or fungi, he discovered that Toll mutants died because they could not mount an effective defense. He was also able to conclude that the product of the Toll gene was involved in sensing pathogenic microorganisms and Toll activation was needed for successful defense against them.

Bruce Beutler was searching for a receptor that could bind the bacterial product, lipopolysaccharide (LPS), which can cause septic shock, a life threatening condition that involves overstimulation of the immune system. In 1998, Beutler and his colleagues discovered that mice resistant to LPS had a mutation in a gene that was quite similar to the Toll gene of the fruit fly. This Toll-like receptor (TLR) turned out to be the elusive LPS receptor. When it binds LPS, signals are activated that cause inflammation and, when LPS doses are excessive, septic shock. These findings showed that mammals and fruit flies use similar molecules to activate innate immunity when encountering pathogenic microorganisms. The sensors of innate immunity had finally been discovered.

The discoveries of Hoffmann and Beutler triggered an explosion of research in innate immunity. Around a dozen different TLRs have now been identified in humans and mice. Each one of them recognizes certain types of molecules common in microorganisms. Individuals with certain mutations in these receptors carry an increased risk of infections while other genetic variants of TLR are associated with an increased risk for chronic inflammatory diseases.

A new cell type that controls adaptive immunity

Ralph Steinman discovered, in 1973, a new cell type that he called the dendritic cell. He speculated that it could be important in the immune system and went on to test whether dendritic cells could activate T cells, a cell type that has a key role in adaptive immunity and develops an immunologic memory against many different substances. In cell culture experiments, he showed that the presence of dendritic cells resulted in vivid responses of T cells to such substances. These findings were initially met with skepticism but subsequent work by Steinman demonstrated that dendritic cells have a unique capacity to activate T cells.

Further studies by Steinman and other scientists went on to address the question of how the adaptive immune system decides whether or not it should be activated when encountering various substances. Signals arising from the innate immune response and sensed by dendritic cells were shown to control T cell activation. This makes it possible for the immune system to react towards pathogenic microorganisms while avoiding an attack on the body's own endogenous molecules.

From fundamental research to medical use

The discoveries that are awarded the 2011 Nobel Prize have provided novel insights into the activation and regulation of our immune system. They have made possible the development of new methods for preventing and treating disease, for instance with improved vaccines against infections and in attempts to stimulate the immune system to attack tumors. These discoveries also help us understand why the immune system can attack our own tissues, thus providing clues for novel treatment of inflammatory diseases.

Bruce A. Beutler was born in 1957 in Chicago, USA. He received his MD from the University of Chicago in 1981 and has worked as a scientist at Rockefeller University in New York, at UT Southwestern Medical Center in Dallas, where he discovered the LPS receptor, and the Scripps Research Institute in La Jolla, CA. Very recently, he rejoined the University of Texas Southwestern Medical Center in Dallas as professor in its Center for the Genetics of Host Defense.

Jules A. Hoffmann was born in Echternach, Luxembourg in 1941. He studied at the University of Strasbourg in France, where he obtained his PhD in 1969. After postdoctoral training at the University of Marburg, Germany, he returned to Strasbourg, where he headed a research laboratory from 1974 to 2009. He has also served as director of the Institute for Molecular Cell Biology in Strasbourg and during 2007-2008 as President of the French National Academy of Sciences.

Ralph M. Steinman was born in 1943 in Montreal, Canada, where he studied biology and chemistry at McGill University. After studying medicine at Harvard Medical School in Boston, MA, USA, he received his MD in 1968. He was affiliated with Rockefeller University in New York since 1970, where he was professor of immunology from 1988. Sadly, Ralph Steinman passed away before the news of his Nobel Prize reached him.

Key publications:

Poltorak A, He X, Smirnova I, Liu MY, Van Huffel C, Du X, Birdwell D, Alejos E, Silva M, Galanos C, Freudenberg M, Ricciardi-Castagnoli P, Layton B, Beutler B. Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: Mutations in Tlr4 gene. Science 1998;282:2085-2088.
Lemaitre B, Nicolas E, Michaut L, Reichhart JM, Hoffmann JA. The dorsoventral regulatory gene cassette spätzle/Toll/cactus controls the potent antifungal response in drosophila adults. Cell 1996;86:973-983.
Steinman RM, Cohn ZA. Identification of a novel cell type in peripheral lymphoid organs of mice. J Exp Med 1973;137:1142-1162.
Steinman RM, Witmer MD. Lymphoid dendritic cells are potent stimulators of the primary mixed leukocyte reaction in mice. Proc Natl Acad Sci USA 1978;75:5132-5136.
Schuler G, Steinman RM. Murine epidermal Langerhans cells mature into potent immunostimulatory dendritic cells in vitro. J Exp Med 1985;161:526-546.

This page is powered by Blogger. Isn't yours?

Subscribe to Posts [Atom]